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Abstract

A new technique, ”Serial Block Face Scanning Electron Microscopy” (SBFSEM), allows for au-
tomatic sectioning and imaging of biological tissue with a scanning electron microscope. Image
stacks generated with this technology have a resolution sufficient to distinguish different cellular
compartments, including synaptic structures, which should make it possible to obtain detailed
anatomical knowledge of complete neuronal circuits. Such an image stack contains several thou-
sands of images and is recorded with a minimal voxel size of 10-20nm in the x and y- and 30nm
in z-direction. Consequently, a tissue block of 1mm3 (the approximate volume of the Calliphora
vicina brain) will produce several hundred terabytes of data. Therefore, highly automated 3D
reconstruction algorithms are needed. As a first step in this direction we have developed semi-
automated segmentation algorithms for a precise contour tracing of cell membranes. These
algorithms were embedded into an easy-to-operate user interface, which allows direct 3D obser-
vation of the extracted objects during the segmentation of image stacks. Compared to purely
manual tracing, processing time is greatly accelerated.
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1. Introduction

Serial Block-Face Scanning Electron Microscopy (SBFSEM) (Denk and Horstmann,
2004) allows for imaging of substantial volumes of biological tissue at high resolution.
Using back-scattering contrast in low-vacuum conditions combined with serial sectioning
of the specimen inside the vacuum chamber, slice thicknesses down to 30nm and a res-
olution of 10-20nm in the x-y plane can be achieved (Briggman and Denk, 2006). This
resolution is sufficient to trace even thin neuronal processes and visualize sites of synaptic
contact, which opens the possibility of reconstructing neuronal circuitry in detail.

We set out to develop algorithms to reconstruct parts of the fly visual ganglia. Although
the fly visual system is well described at a resolution accessible with light microscopy
(Strausfeld, 1984), knowledge at the ultrastructural level is necessary in order to get
further insights into the circuits underlying visual motion processing (Borst and Haag,
2002). The methods described here were developed with this specific goal in mind, but
should be applicable to other types of imaging data, too. While it is, in principle, possible
to segment three-dimensional image blocks directly, we chose to segment each image in
sequence, using the information obtained from previous images.

We first describe the preprocessing steps performed before the actual segmentation.
We then introduce the segmentation algorithms. We emphasize the general probabilistic
framework for this task and describe two algorithms in detail. We sketch some alternative
approaches and possible extensions.

2. Preprocessing Steps

First, intensity values within each image are normalized to have the same median and
inter-quartile range. Next, each image is spatially filtered. For the filtering, our program
gives the user the choice between Gaussian broadening and nonlinear diffusion (Perona
and Malik, 1990). Nonlinear diffusion is noise-removing yet edge preserving filtering tech-
nique which, at each location, makes the degree of filtering dependent on an estimate of
the intensity-gradient at that location. Thereby, strong edges are preserved, but regions
that do not have strong edges are smoothed substantially. We used a publicly available
matlab filtering toolbox (D’Almeida, 2000). Since the performance of filters can be sensi-
tive to the choice of parameters, it is advisable to optimize parameters on, or even learn
the filters from (Vollgraf et al., 2004), manually labeled images.

As a final preprocessing step, the cross-correlation between any two consecutive images
is calculated. This allows the detection and elimination of corrupted images, which can
result, for example, when debris has gotten onto the block face.
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3. Segmentation Algorithms

3.1. General Approach

To allow segmentation of large stacks of images, as well as to enable user interaction,
we segment images sequentially rather than the whole stack at once. We assume that the
objects are continuous across adjacent images — an assumption that can be problematic
for processes that run at a shallow angle to the slicing plane. To ensure continuity, we
need to combine the information from the pixel-intensities of the current image with that
from the segmentation of the previous image. Therefore, we use a prior that favors such
segmentations or, in other words, the segmentation of one image is propagated into the
next. For the very first image, however, we have to use a different strategy, which we will
describe in 3.4.

3.2. Level Set Methods

We chose algorithms that do not represent the boundaries of objects explicitly by
using, for example, splines, but rather implicitly as the zero-level set of (usually) a signed
distance function φ. We seek to segment the image I : Ω → R, where I(x) is the gray-
scale value of pixel x, into foreground and background regions. In the level-set framework
(Osher and Fedkiw, 2003; Sethian, 1999), one tries to find a function φ : Ω → R, such
that the set Ω+ = {x : φ(x) > 0} is the foreground, i.e. the set of pixels that are inside
a neuron and Ω− = {x : φ(x) < 0} is the background. The contour separating objects
and background is given by Γ = {x : φ(x) = 0}. Note that images with multiple objects
can be segmented with a single segmentation function, φ, by defining objects to be the
connected components of the foreground regions.

As this embedding is not unique, φ is sometimes constrained to be a signed distance
function (SDF), i.e. such that its absolute value gives the distance to the closest boundary.
However, this does not have to be the case. For example, given a statistical model for
the segmentation, one could interpret φ(x) + t (where t is a scalar offset) to be the log
of the probability that pixel x belongs to the foreground. In this case, φ(x) indicates not
only what region a pixel is assigned to, but also represents a measure of the confidence
placed in the assignment.

Compared to an explicit representation, an implicit representation has the advantage
that it can easily deal with changes in topology (such as splitting or merging of objects),
and can readily be extended to higher dimensions.

We focus on region-based methods, which do not rely on detecting edges in the image,
but exploit differences in the distribution of pixel intensities in fore- and background
regions. In practice, an (artificial) time variable, t, is often introduced and φt is evolved
to minimize some energy function, E(φ, I), (Cremers et al., 2006).

Algorithms that have been developed for the analysis of images obtained from confocal–
or multi-photon microscopy are often based on the assumption that neuronal structures
can be modeled as tube-like structures (Koh et al., 2002; Al-Kofahi et al., 2002; Schmitt
et al., 2004) with approximately circular cross-sections. We did not make this assumption,
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as the processes observed in our data can have shapes very dissimilar to circles.
Level-set methods are commonly used for segmentation of three-dimensional objects

for bio-medical applications (Whitaker et al., 2001) as well as in other domains (Huang
et al., 2005). Our algorithms differ from existing ones in the way that information is
propagated from one image to the next, and in the exact form of the energy-functions
used. Furthermore, many algorithms segment the three-dimensional data-blocks directly
and need time-consuming computations, and are thus not well suited for online user
interaction. Our approach is related to the one of (Jurrus et al., 2006), who used a
propagation scheme based on kalman filters and explicit contours rather than level-sets
to represent objects.

3.3. Probabilistic Framework

3.3.1. Statistical Model
Let In be image n, and φn the corresponding segmentation that is to be found. Also,

suppose that we have already segmented the previous image, such that φn−1 is known.
We want to find the most probable segmentation, φn, given In and φn−1, i.e. one such
that P (φn|In, φn−1) is maximal (Cremers et al., 2006). By Bayes’ Rule, we obtain

P (φn|In, φn−1) ∝ P (In|φn, φn−1)P (φn|φn−1).

P (φn|φn−1) can be interpreted as a prior on the possible segmentations φn, and can
be used to ensure continuity of objects between adjacent images. This helps tracing of
structures through multiple images. In addition, other priors can be used to favor smooth
contours, or to incorporate prior knowledge about the likely shapes of segmented objects.
Ideally, these priors would be learned from manually labeled images, but for lack of an
extensive training set, we had to chose the functional forms for the prior distributions.

For simplicity, we assume that image, In, is independent of the segmentation of the
previous image, φn−1, given the actual segmentation, φn, i.e. P (In|φn) = P (In|φn, φn−1).
For a given (signed) distance, d, P (In(x)|φn(x) = d) gives the probability distribution
for the intensities of all pixels that are on the outside (or inside, depending on the sign
of φ(x)), and have a distance d to the closest boundary. For convenience, we will from
now on write φ instead of φn to denote the segmentation function of the current image,
n. We use the term φ0 instead of φn−1 to denote the signed distance function derived
from the segmentation of the previous image.

Maximizing the posterior probability, P (φ|I), is equivalent to minimizing its negative
logarithm, which leads to the energy function

E(φ|I) = − log(P (I|φ))− log(P (φ|φ0)) = EI + Eπ.

The total energy is written as a sum of an image-dependent part EI and a prior-
dependent part Eπ. In the following, we will specify two possible forms of the probability
distributions, P (I|φ) and P (φ|φ0), in detail and also discuss possible alternatives, such
as learning the distributions non-parametrically from data.
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3.3.2. A simple algorithm
We assume a normal distribution for the pixel-intensities I(x) with mean αφ(x) − β

and variance σ2, i.e. on average the intensity of pixels is linearly related to their signed
distance to the boundary. We also assume that the difference of the signed distance
functions of two adjacent images is normally distributed. As mentioned above, this favors
segmentations that are similar to the segmentation of the previous images, with the aim
of improving the tracking of structures through multiple images.

The corresponding probability distributions are:

P (I|φ)∝ exp

(
−
∫

Ω

(
I − αφ− β

2σ

)2

dx

)

P (φ|φ0)∝ exp
(
‖φ− φ0

2η
‖2

)
= exp

(
−
∫

Ω

(
φ(x)− φ0(x)

2η

)2

dx

)
.

This leads to an energy function of the form:

E(φ|I) =
∫

Ω

(
I − αφ− β

σ

)2

+
∫

Ω

(
φ− φ0

η

)2

,

which attains its minimum for

φ = (
α2

σ
+

1
η
)−1(

α

σ
I +

1
η
φ0 −

αβ

σ
)

Therefore, the function φ, which characterises the current segmentation, is merely a lin-
ear combination of the intensity values of the current image I, the previous segmentation
function φ0, and a scalar offset (fig. 1).

Although this model might be too restrictive to provide a good fit to the actual image,
using such a simple form has two advantages: Firstly, the minimum of the energy function,
minE(φ|I), has a simple closed-form solution, which permits rapid calculation of the
boundary. Secondly, the parameters α, β, σ and η can be interpreted and adjusted while
the effect on the segmentation is visually judged. The parameter α re-scales the distances
relative to intensities and β is an offset: If an intensity value of a pixel is larger than β,
then (ignoring the prior), it is more likely that the pixel belongs to an object than to
the background. The parameters σ and η control the relative weight of the image and
the prior-dependent contribution. We also decided to penalize discrepancies between two
adjacent segmentations only if they exceed a threshold, τ , as small variations between
adjacent images are to be considered as normal. Thus, the term (φ(x)− φ0(x))2 was
replaced by |φ(x)− φ0(x)|2τ , where

|φ(x)− φ0(x)|2τ =

{
(|φ(x)− φ0(x)| − τ)2 for |φ(x)− φ0(x)| ≥ τ

0 else

Then the form of the solution is as before, just with φ0 replaced by |φ0|τsign(φ0).
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Figure 1. Schematic illustration of the algorithm: The segmentation function φ of the image (red) is the
weighted sum of the intensity value of that image (gray) and a term that depends on the segmentation
of the previous image (blue).

3.3.3. An alternative algorithm
The algorithm described above does not attempt to achieve segmentations with smooth

boundaries. In addition, it makes a rather restrictive assumption about the intensity
distribution of pixels in the image. We therefore implemented a second segmentation
algorithm with a different energy function that also contains a term favoring smooth
segmentations.

This algorithm assumes that the pixel-intensity distributions of the background and
foreground, P− and P+, are different but might overlap. Furthermore, we assume that
the probability that a given pixel has a certain intensity only depends on the region that
the pixel belongs to, but not on its distance to the closest boundary. We can estimate P+

and P−, from manually segmented images. One could use the histograms of intensities in
these images directly (Cremers and Rousson, 2006), but we chose to approximate them
by Gaussians, with specific means and variances, µ± and σ2

±. This has the advantage of
specifying the distribution using a small number of parameters, which can be manually
optimized by the user. We then get

EI =
∫

Ω+

1
2

log(σ+)(I(x)− µ+)2dx +
∫

Ω−

1
2

log(σ−)(I(x)− µ−)2dx

= c+

∫
Ω+

(I(x)− µ+)2dx + c−

∫
Ω−

(I(x)− µ−)2dx,

where c± = 1
2 log(σ±). The cost function EI is low if the pixels inside the objects are

close to µ+, and the pixels outside are close to µ−.
The prior-dependent energy Eπ is a sum of the two terms Econt and Esmooth,
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Eπ = Econt + Esmooth .

The first term, Econt, ensures that segmentations of adjacent images are similar, and is
identical to the corresponding term in the algorithm described in 3.3.2.

Econt = λcont

∫
Ω

|φ(x)− φ0(x)|2τdx

We also include a second term, Esmooth, which penalizes the length of the boundary
between foreground and background, favoring smooth boundaries.

Esmooth = λsmooth

∫
Ω

δ(φ(x))|∇φ|dx

The choice of the parameters λcont and λsmooth determines the relative importance of
the two energy terms. In particular, the smoothness term can be switched off by choosing
the weight λsmooth to be 0.

If λcont = 0, this model is similar to the (piecewise continuous) version of the Mumford-
Shah functional (Mumford and Shah, 1989; Chan and Vese, 2001). In our model, the
means, µ±, are known a priori and do not have to be optimized further.

We are primarily interested in the regions where the actual segmentation φ is close to
0 rather than in calculating its exact value for all x. Therefore, we also add the constraint
that, for all pixels x,

|φ(x)− φ0(x)| < τ̂,

where τ̂ is some positive scalar value. This constraint is computationally convenient,
as it allows us to restrict all calculations to the region of the image where |φ0| < τ̂ .
The parameter τ̂ is chosen such that it exceeds the largest difference expected between
successive images.

3.3.4. Solution by Gradient Descent
We can find a (local) minimum of the energy function E by an iterative procedure:

Starting with an initial guess, φ(0), we repeatedly update the segmentation function φ
via the evolution equation

φ(k+1) = φ(k) + tstep
dφ

dt
,

where tstep is the step-size. The update-direction dφ/dt can be found by calculating the
gradient of the function E with respect to the segmentation function φ (Chan and Vese,
2001):

∂E

∂φ
=

dφ

dt
= −δ(φ)(log(P+(I))− log(P−(I)))− ∂

∂φ
log(P (φ|φ0)).

With the particular distributions P± and our energy function E = EI +Econt+Esmooth

we obtain
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dφ

dt
=δ(φ)(c+(I − µ+)2 − c−(I − µ−)2)

+2λcont|φ− φ0|τsign(φ− φ0)

+λsmoothδ(φ)∇.(
∇φ

‖∇φ‖
).

The gradient dφ/dt is, except for the last two terms in the sum, identical to the one
used in (Chan and Vese, 2001). We employ the commonly used smooth approximations,
Hε and δε, for the Heaviside– and δ-functions:

Hε(s) =
1
2
(1 +

2
π

tan−1(
s

ε
))

δε(s) =
d

ds
Hε(s) =

ε

π(ε2 + s2)
,

where ε is a positive parameter.
We initialize the algorithm with the segmentation function of the previous image, i.e.

by φ(0) = φo. Since this initial value is usually reasonably close to the desired solution,
the algorithm converges very quickly. In addition, we only have to update φ close to the
boundary Γ, and not on the whole domain Ω.

Even if the segmentation φ is initialized to be a signed distance function, this prop-
erty is not preserved by the update step. Therefore, φ has to be reinitialized every few
iterations to ensure stability of the algorithm. Reinitialization creates a SDF function
that is consistent with the given segmentation. For details, see (Osher and Fedkiw, 2003;
Sethian, 1999).

The algorithm described in this section is more flexible than the one in 3.3.2, but also
computationally more demanding, as each iteration takes as long as one run of the simple
algorithm.

3.4. Segmentation of First Image

For the segmentation of the very first image in a stack, we can not rely on information
from the preceeding slice, so a slightly different strategy has to be used. We segment
the first image with one of the two algorithms above (ignoring the term Eπ), and de-
fine objects to be the connected components of foreground regions Ω+, which we call
o1 . . . on. For each object oi, we have to determine whether it actually corresponds to
a neuronal process. We extract three coefficients for each object (mean intensity, area,
and “roundness”, i.e. area divided by square of circumference), and perform classifica-
tion in this three-dimensional space with logistic regression, using the manually labeled
data as a training set. We also allow adjustment of the weights of the regression via
sliding-bars. With this procedure, a reasonable initialization is obtained quickly, which
can subsequently be fine-tuned and corrected manually.
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4. Segmentation Software

4.1. Graphical User Interface

The Graphical User Interface (GUI) was implemented using the object-oriented pro-
gramming language Java. The preprocessing steps (section 2) and the segmentation algo-
rithms (section 3) were implemented in MATLAB (Mathworks), and the matlab-engine
is called within the Java-program. Our software includes an easy-to-operate GUI and
provides three image–processing functionalities:
– Image Viewer: The image viewer displays image stacks in single–image or movie mode

and can optionally calculate the intensity distribution for each image.
– Image Preprocessing: The GUI allows selection of the filter (section 2), and the setting

of user-specified parameters.
– Image Segmentation: The GUI allows to choose between the segmentation algorithms

(chapter 3) and to set additional parameters. After the segmentation of the first image,
the resulting boundaries are superimposed on the gray-level image. The user can now
change parameters and select regions of interest manually. Only the selected regions
are used to calculate the prior for the following image. It is also possible to interact
manually during the segmentation process of later images by inserting new regions
or by adjusting contour lines. In a last step, contour line information of each image
is stored in an Extensible Markup Language (xml) file that can later be used for
reconstruction and visualization of 3D surfaces.
Regions can be adjusted or added manually by inserting points along the desired

contour using mouse-clicks, which are subsequently interpolated by B-splines. B-splines
can easily be edited and quickly recalculated, because changes in one control point only
affect the local shape of the curve (de Boor, 1978). For the implementation we used
functions from Matlab’s Spline Toolbox.

The following figure (fig. 2) displays screenshots of the GUI, e.g. segmentation of
the first image (segmentation movies of 100 and 215 images available as supplementary
material):
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Figure 2. Segmentation of the first image (screen shots)
The overview (A) shows the image and the parameter adjustment GUI. In the zoomed image (B) it

can be seen how even small structures can be detected
For each object of the first segmented image the mean intensity, area, and “roundness”, i.e. area

divided by square of circumference, are extracted (see 3.4). The weighted sum of these three
coefficients is represented by the color of the contour line: A continuous color scale is used from black

for very small values to red for very high values of the weighted sum. Scalebars 1µm.

4.2. Visualization

The software was developed to visualize 3D structures of neuronal circuits. The recon-
struction of neuronal surfaces from contour lines is implemented using a reconstruction
method similar to that described by Keppel (Keppel, 1975). The software provides 3D
visualization during the segmentation process (fig. 3). The reconstructed anatomical data
can be exported to different 3D visualization programs, such as Amira (Amira, 2006).
To give an impression of the final visualization of neuronal structures fig. 3 displays 3D
surfaces of axonal structures in the outer chiasm of the blowfly Calliphora vicina.
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Figure 3. Visualization of axonal structures
(Size of image stack: 14 x 14 x 26 µm3, slice thickness 50nm, average diameter of process shown in

brown is 1, 53µm and in grey 1, 13µm) (A) Single axonal structure with SBFSEM-Images. (B) Two
axonal structures lying close to each other, embedded in a SBFSEM-Image Block. (C) Zoomed and

rotated view of figure 3B. Scalebars: 3µm(A, B), 1µm(C).

5. Quantifying the performance of the algorithms

The performance of the described algorithms depends on the properties of the original
image stack, e.g. the image contrast and number of disrupted images. In particular,we
assumed that objects are separated from the background by their pixel intensities, and
that the objects do not vary to quickly between slices. These assumptions have to hold
in order for the algorithms to work.

To quantify performance we used an image stack from the Calliphora vicina outer
chiasm. Osmium tetroxide and uranyl acetate were used as contrast agents, which made
membranes appear darker. We filtered the image stack with the Gaussian filter, standard
deviation σ = 1 pixel (section 2) and extracted an image cube of 512×512×250 pixels in
x, y and z-direction. The extracted image cube covers a tissue volume of 14×14×13µm3.
To demonstrate the performance of the algorithm for processes with different properties,
we selected regions with area size ranging from 55 up to 7800 pixels in the initial slice,
and different “roundness factors” (see fig. 4).
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Figure 4. Quantification of performance
Fifteen regions (labeled in red) were segmented for the performance test. The number of pixels per

region ranges from 55 pixels(region 9, labeled in green) up to 7800 pixels(region 15, labeled in green).
The roundness factors range from 0.3217 (region 12, labeled in green) up to 0.9069 (region 9, labeled in

green). Scalebar: 20 pixels (540nm).

We analyzed this data set with both methods described in chapter 3:
– Using the simple algorithm (3.3.2), it took, on average, 3 seconds to segment one im-

age. User interaction consisted of eye-inspection of the segmentation and, if necessary,
manual correction. In the image stack displayed above, the user had to correct 2% of
2000 regions manually.

– Alternative algorithm: Average processing time per image amounted to 5 seconds plus
user interaction. Out of 2140 regions, 1.5% regions had to be corrected manually.
For both segmentation methods the quality of the segmentation, and hence the need

for user interaction depends mainly on the contrast between the object and the surround
background as well as the complexity of the contour lines. For example, region 15 (in
Fig. 4), which has a high contrast and does not deviate from one image to the next,
could be segmented and traced through all slices without any user interaction. Regions 3
and 7 in Fig. 4 have complicated contour lines which are very variable between images.
Much more user interaction was required for these two objects than for others, but they
could be reconstructed using a combination of algorithmic user-interaction and manual
corrections (see fig. 3 for the three-dimensional reconstruction).
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Figure 5. Typical errors made by the algorithm
Two typical situations in which the algorithm failed to give a satisfactory segmentation, and had to be
corrected manually. Left side: Original image section,Right side: Segmentation results, labeled in red.

Scalebar: 28 pixels (750nm).

A) Image 120: The structure surrounding the black dot (see yellow arrow) has a ragged contour, and is not
successfully segmented by the algorithm, which splits it up into two regions.

B) Image 129: The region at the lower left of the region we want to segment is separated by only a thin and light
line (yellow arrow), and thus wrongly joined to the large region. As before, the region indicated
by the green line is separated into two regions.

Figure 6. Splitting of objects
The use of a level-set approach makes it possible to segment splitting objects without

reparametrization. In this example, the object is split into two constituents, each of which is tracked in
subsequent images. Scalebar: 55 pixels (1.47µm).

Independently of the method used, the total time taken per image (algorithmic seg-
mentation plus user interaction) was a about 15 seconds for fifteen selected regions. A
purely manual tracing of the selected regions (fig. 4) takes about 12 minutes per image.
The user had to trace the boundaries for each region manually by marking corner-points
with mouse-clicks. We, thus, have a speed-up by a factor of about 50 by algorithmic over
manual segmentation.
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All performance tests were executed on a 64-bit workstation (64-Bit-Dual-Core Intel
Xeon Processors, operating system: Windows XP64).

6. Possible Extensions

6.1. Including Texture Information

Instead of using the difference in distributions of single pixel intensities, additional in-
formation can be obtained by looking at texture differences between fore- and background
regions. Texture information could be, for example, useful for detection of mitochondria.
To use texture information, we can look at the neighborhood, N (x), of each pixel x, and
estimate the distributions of these patches inside and outside objects. The neighborhood
could either be taken to be two-dimensional, i.e. by looking at nearby pixels, or three-
dimensional by also including pixels from adjacent images. We can train a classification
algorithm on a training set of patches sampled from labeled images, and set L(x) to be
the output of the classifier to input N (x). The value of L(x) will then be positive if
the neighborhood N (x) is more likely to belong to the foreground than the background,
and negative otherwise. This newly constructed image, L(x), can be segmented using the
algorithms described above. This approach can be implemented with any classifier that
produces real-valued rather than binary output, such as support-vector machines (Kim
et al., 2002).

6.2. Incorporating Edge Information

Region-based methods are only appropriate if the distributions of pixels (or textures) in
the fore- and background regions are sufficiently different. In some situations, it might be
advantageous to use information about the edges themselves, for example when different
regions have similar statistical structure, but are separated by strong edges.

Edge-based algorithms could be incorporated by including additional terms into the
evolution-equation for the segmentation φ, yielding a level set equation of the form

dφ

dt
+ VE · ∇φ + (Vn − Vκκ)|∇φ| = 0.

The vector field VE and the scalar field Vn are chosen such that the contour Γ moves
towards edges of the image, with the aim of making the segmentation-boundary, Γ,
consistent with edges in the image. The coefficient for the curvature–dependent force,
Vκ (which has to be non-negative for the method to be stable), can be used to ensure
smooth boundaries.

6.3. Flexible Priors for φ

Our prior for the segmentation φn of image n is peaked at the segmentation φn−1 of
the previous image independent of the segmentation of slices n − k, with k > 1. Given

14

Page 14 of 17 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

sufficient training data, one could drop this rather restrictive assumption, and use more
than one image in the calculation of the prior (Cremers, 2006). For example, one could
assume φn to be similar to 2φn−1−φn−2, which is the linear prediction based on the two
previous images. More generally, one could learn the best prediction of φn (given previous
slices), and use both the prediction and the estimated uncertainty of the prediction for
the segmentation process.

7. Conclusion

The described segmentation algorithms in combination with the developed software
allows a comfortable analysis of SBFSEM image stacks. Images are analyzed in sequence
to allow processing of large amounts of data, and to facilitate user interaction at every
stage. Continuity of segmentation, which is important especially for the tracking of fine
structure across images, is enforced by our algorithms. In addition, simultaneous recon-
struction of the resulting 3D structure enables the user to locate errors and to interact
during the segmentation step. While, ultimately, algorithms that do not require any or
very little user-interaction are desirable, the algorithms described here present a first step
in this direction. In particular, they can be applied if an extensively labeled data-set is
not available, or as a means of quickly obtaining such data-sets.
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